Gate current degradation in W-band InAIN/AIN/GaN HEMTs under Gate Stress

Yufei Wu and Jesús A. del Alamo Microsystems Technology Laboratories (MTL) Massachusetts Institute of Technology (MIT)

Sponsor: National Reconnaissance Office April 04, 2017

To understand degradation of gate leakage current in ultra-scaled InAIN/AIN/GaN HEMTs under positive gate stress

- 1. Motivation
- 2. Devices and experimental approach
- 3. Gate stress experiments
 - Harsh step-stress (-recovery) experiments
 - Mild constant gate stress experiment
- 4. Thermal stress
- 5. Gate current: dominant charge transport mechanisms
- 6. Conclusions

1. Motivation

- 2. Devices and experimental approach
- 3. Gate stress experiments
 - Harsh step-stress (-recovery) experiments
 - Mild constant gate stress experiment
- 4. Thermal stress
- 5. Gate current: dominant charge transport mechanisms
- 6. Conclusions

Benefits of GaN for RF

Promising applications:

Benefits of GaN for RF:

- Wide bandwidth
- High power density
- Excellent energy efficiency
- Small volume

InAIN as barrier material

	Al _{0.2} Ga _{0.8} N/GaN	In _{0.17} AI _{0.83} N/GaN
ΔP_0 (cm ⁻²)	6.5 x 10 ¹²	2.7 x 10 ¹³
P _{piezo} (cm ⁻²)	5.3 x 10 ¹²	0
P _{total} (cm ⁻²)	1.2 x 10 ¹³	2.7 x 10 ¹³

[J. Kuzmik, EDL 2001]

- High spontaneous polarization in InAIN \rightarrow high 2DEG density
- InAIN thickness scaling → gate length scaling
 → W- and V-band applications

InAIN as barrier material

In_{0.17}Al_{0.83}N lattice matched to GaN \rightarrow Potentially better reliability!

- 1. Motivation
- 2. Devices and experimental approach
- 3. Gate stress experiments
 - Harsh step-stress (-recovery) experiments
 - Mild constant gate stress experiment
- 4. Thermal stress
- 5. Gate current: dominant charge transport mechanisms
- 6. Conclusions

Devices (E-mode)

InAIN/AIN/GaN HEMTs:

- E-mode
- $L_g = 40 \text{ nm}$ $L_{gs} = L_{gd} = 1 \mu \text{m}$
- W-band

[Saunier, CSICS 2014]

BFTEM of virgin device

Thermal models available

FOMs for benign characterization, detrapping methodology

FOMs:

- I_{Dmax} : I_D at V_{GS} = 2 V and V_{DS} = 4 V
- V_{Tsat} : V_{GS} extrapolated from I_D at peak g_m point at $V_{DS} = 4 V$
- I_{Goff} : I_G at V_{GS} = -2 V, V_{DS} = 0.1 V
- I_{Doff} : I_{D} at V_{GS} = -2 V, V_{DS} = 0.1 V
- R_D : at I_G = 20 mA/mm
- R_s : at I_g = 20 mA/mm

Detrapping & initialization:

100 °C bake for 1 hour

Impact of characterization and detrapping

Impact of 200 successive characterizations

	ΔI _{Dmax} /I _{Dmax} (0) [%]	ΔV _{Tlin} [mV]	$R_D/R_D(0)$	R _S /R _S (0)
After initialization	0	0	1	1
After 200 characterizations	0.70	-23.4	0.95	0.89
After detrapping	0	2.3	1.01	1

Nearly complete recovery after thermal detrapping step
 → characterization suite is benign and detrapping step is effective

- 1. Motivation
- 2. Devices and experimental approach
- 3. Gate stress experiments
 - Harsh step-stress (-recovery) experiments
 - Mild constant gate stress experiment
- 4. Thermal stress
- 5. Gate current: dominant charge transport mechanisms
- 6. Conclusions

RT Positive-V_G step-stress-recovery experiment

V_{GS,stress}

S

Stress conditions:

- $V_{GS,stress} = 0.1 2.5 V in 0.1 V steps, V_{DS} = 0 V, RT$
- Recovery: $V_{DS} = V_{GS} = 0 V$
- Stress time = recovery time = 150 s
- Characterization every 15 s

Time evolution of I_{Goff} and R_D

Two mechanisms:

- From V_{GS,stress} = 1.7 V: I_{Goff} ↑, trapping ↑ → mechanism 1: new defects generated in AIN
- From $V_{GS,stress} = 2.3 V$: $\circ I_{Goff} \uparrow \uparrow$ $\circ R_D and R_S \uparrow \uparrow$ Mechanisms 2 ?

Before and after stress: permanent degradation

• $I_{\text{Doff}} \uparrow \uparrow$ • $I_{\text{Dmax}} \downarrow$ • $\Delta V_{\text{Tsat}} > 0$ Mechanisms 2: consistent with gate sinking

High T Positive-V_G step-stress experiment

Stress conditions:

- $V_{GS,stress} = 0.1 2.5 \text{ V in } 0.1 \text{ V steps}, V_{DS} = 0 \text{ V}, T_{stress} = 150 \text{ °C}$
- Stress time = 60 s
- Characterization every 15 s

High T Positive-V_G step-stress experiment

- From $V_{GS,stress} = 1.4 \text{ V: } I_{Goff} \uparrow$
- From $V_{GS,stress} = 2.0 \text{ V}$: I_{Goff} , R_D , and $R_S \uparrow \uparrow$
- Lower threshold for degradation than at RT → Both mechanisms thermally enhanced

- 1. Motivation
- 2. Devices and experimental approach

3. Gate stress experiments

- Harsh step-stress (-recovery) experiments
- Mild constant gate stress experiment
- 4. Thermal stress
- 5. Gate current: dominant charge transport mechanisms
- 6. Conclusions

RT Constant-V_G stress experiment

Stress conditions:

- $V_{GS,stress} = 2 V, V_{DS} = 0 V, RT$
- Characterization every 15 s

- I_{Goff} becomes noisy at t_{stress} ~ 500 s; increases afterwards
 → consistent with trap generation in AIN layer (mechanism 1)
- R_D changes little throughout experiment
- $I_{Gstress}$ keeps decreasing \rightarrow no Schottky barrier degradation

Before and after stress: permanent degradation

- I_{Doff} ↑↑
- No significant I_{Dmax} degradation
- No significant subthreshold characteristics degradation

Summary so far

Two degradation mechanisms identified:

- 1. Under mild gate stress:
 - \circ Observation: I_{Goff} \uparrow , trapping \uparrow , thermally enhanced

 Proposed mechanism 1: high electric field induced defect generation in AIN interlayer

2. Under harsh gate stress:

- Observation: I_{Goff} ↑, R_D and R_S ↑, $\Delta V_T > 0$, $I_{Dmax} \downarrow$, thermally enhance
- Proposed mechanism 2: self-heating induced Schottky gate degradation, or gate-sinking

- 1. Motivation
- 2. Devices and experimental approach
- 3. Gate stress experiments
 - Harsh step-stress (-recovery) experiments
 - Mild constant gate stress experiment

4. Thermal stress

5. Gate current: dominant charge transport mechanisms

6. Conclusions

Thermal stress experiment

Impact of thermal stress: 1 min. RTA in N₂

Permanent degradation:

- Prominent $I_{Dmax} \downarrow$ with T
- Positive V_{Tsat} shift

• I_{Doff} ↑

Same signature as that of degradation mechanism 2 \rightarrow consistent with <u>gate sinking</u>

- 1. Motivation
- 2. Devices and experimental approach
- 3. Gate stress experiments
 - Harsh step-stress (-recovery) experiments
 - Mild constant gate stress experiment
- 4. Thermal stress
- 5. Gate current: dominant charge transport mechanisms
- 6. Conclusions

Virgin device: Thermionic Field Emission fitting

- T dependence well explained by Thermionic Field Emission (TFE) theory
- Extracted effective Schottky barrier height (ϕ_b): 0.95 eV

After harsh gate stress: Poole-Frenkel Emission fitting

Stress conditions: $V_{GS,stress} = 0 - 2.5 \text{ V}$ in 0.1 V steps, $V_{DS} = 0 \text{ V}$

- T dependence well explained by Poole-Frenkel Emission (P-F) theory
- Extracted effective trap energy level (ϕ_t): 0.11 eV

After mild gate stress: Poole-Frenkel Emission fitting

Stress conditions: $V_{GS,stress} = 2 V, V_{DS} = 0 V$

- T dependence well explained by Poole-Frenkel Emission (P-F) theory
- Extracted effective trap energy level (ϕ_t): 0.36 eV
- Close to donor level of N vacancy in AIN of 0.5 eV [T. L. Tansley, PRB 1992]

- 1. Motivation
- 2. Devices and experimental approach
- 3. Gate stress experiments
 - Harsh step-stress (-recovery) experiments
 - Mild constant gate stress experiment
- 4. Thermal stress
- 5. Gate current: dominant charge transport mechanisms
- 6. Conclusions

Conclusions

Identified two degradation mechanisms:

- 1. Under mild gate stress:
 - \circ Observation: I_{Goff} \uparrow , trapping \uparrow , thermally enhanced
 - Proposed mechanism 1: high electric field induced defect generation in AIN interlayer
- 2. Under harsh gate stress:
 - Observation: I_{Goff} ↑, R_D and R_S ↑, $\Delta V_T > 0$, $I_{Dmax} \downarrow$, thermally enhanced
 - Proposed mechanism 2: self-heating induced Schottky gate degradation, or gate-sinking

Transport model for I_G in low forward regime:

- Virgin device: TFE with ϕ_b = 0.95 eV
- After degradation mechanism 1: P-F with ϕ_t = 0.36 eV
- After degradation mechanism 2: P-F with $\phi_t = 0.11 \text{ eV}$