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Purpose

To understand degradation of gate leakage current 

in ultra-scaled InAlN/AlN/GaN HEMTs 

under positive gate stress 
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Benefits of GaN for RF: 
• Wide bandwidth
• High power density
• Excellent energy efficiency
• Small volume

Promising applications:

Benefits of GaN for RF
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• High spontaneous polarization in InAlN high 2DEG density 
• InAlN thickness scaling  gate length scaling 

W- and V-band applications

Al0.2Ga0.8N/GaN ln0.17Al0.83N/GaN

Δ P0 (cm-2) 6.5 x 1012 2.7 x 1013

Ppiezo (cm-2) 5.3 x 1012 0

Ptotal (cm-2) 1.2 x 1013 2.7 x 1013

[J. Kuzmik, EDL 2001]

InAlN as barrier material
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In0.17Al0.83N

In0.17Al0.83N lattice matched to GaN
 Potentially better reliability!

[M. A. Laurent, JAP 2014]

InAlN as barrier material
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Devices (E-mode)

Thermal models available

BFTEM of virgin device 

Gate metal

passivation

InAlN

AlNGaN

InAlN/AlN/GaN HEMTs:
• E-mode
• Lg = 40 nm
• Lgs=Lgd=1 µm
• W-band

[Saunier, CSICS 2014]

5 nm
1 nm



FOMs:
• IDmax : ID at VGS = 2 V and VDS = 4 V
• VTsat : VGS extrapolated from ID at peak gm point at VDS = 4 V
• IGoff : IG at VGS = -2 V, VDS = 0.1 V
• IDoff : ID at VGS = -2 V, VDS = 0.1 V
• RD : at IG = 20 mA/mm
• RS : at IG = 20 mA/mm

Detrapping & initialization:
• 100 °C bake for 1 hour
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FOMs for benign characterization, 
detrapping methodology
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ΔIDmax/IDmax(0)
[%]

ΔVTlin
[mV] RD/RD(0) RS/RS(0)

After 
initialization

0 0 1 1

After 200 
characterizations

0.70 -23.4 0.95 0.89

After detrapping 0 2.3 1.01 1

Impact of 200 successive characterizations

Nearly complete recovery after thermal detrapping step 
 characterization suite is benign and detrapping step is effective

Impact of characterization 
and detrapping
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Stress conditions: 
• VGS,stress = 0.1 – 2.5 V in 0.1 V steps, VDS = 0 V, RT 
• Recovery: VDS = VGS = 0 V
• Stress time  = recovery time = 150 s
• Characterization every 15 s

• IGstress ↑ at constant VGS,stress for VGS,stress ≥ 2.3 V
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Time evolution of IGoff and RD

Two mechanisms:
• From VGS,stress = 1.7 V: IGoff ↑, trapping ↑ mechanism 1: new defects 

generated in AlN
• From VGS,stress = 2.3 V: 

o IGoff ↑ ↑
o RD and RS ↑ ↑
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Mechanisms 2 ?



 

Before and after stress: permanent 
degradation

• IDoff ↑↑
• IDmax ↓
• ΔVTsat > 0
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Mechanisms 2: consistent with gate sinking

IDoff

VTsat

IDmax



Stress conditions: 
• VGS,stress = 0.1 – 2.5 V in 0.1 V steps, VDS = 0 V, Tstress = 150 °C 
• Stress time = 60 s
• Characterization every 15 s

High T Positive-VG step-stress 
experiment

16

0 240 480 720 960 1200 1440
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103 2.4
VGS,stress (V)

I G
st

re
ss

 (m
A/

m
m

)

time (s)

0.1 0.4 0.8 1.2 1.6 2.0

960 1080 1200 1320 1440 1560
102

103

VGS,stress (V)

I G
st

re
ss
 (m

A/
m

m
)

time (s)

1.6 1.8 2.0 2.2 2.4

2.0 V

• IGstress ↑ at constant VGS,stress for VGS,stress ≥ 2.0 V



High T Positive-VG step-stress 
experiment
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• From VGS,stress = 1.4 V: IGoff ↑
• From VGS,stress = 2.0 V: IGoff, RD, and RS ↑ ↑
• Lower threshold for degradation than at RT  Both mechanisms 

thermally enhanced
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Stress conditions: 
• VGS,stress = 2 V, VDS = 0 V, RT 
• Characterization every 15 s

RT Constant-VG stress experiment

  

• IGoff becomes noisy at tstress ~ 500 s; increases afterwards 
 consistent with trap generation in AlN layer (mechanism 1)

• RD changes little throughout experiment
• IGstress keeps decreasing  no Schottky barrier degradation
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Before and after stress: permanent 
degradation

 

• IDoff ↑↑
• No significant IDmax degradation
• No significant subthreshold characteristics degradation
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IDoff



Two degradation mechanisms identified:
1. Under mild gate stress:

oObservation: IGoff ↑, trapping ↑, thermally enhanced
oProposed mechanism 1: high electric field induced 

defect generation in AlN interlayer

2. Under harsh gate stress:
oObservation: IGoff ↑, RD and RS ↑, ΔVT > 0, IDmax ↓, 

thermally enhance
oProposed mechanism 2: self-heating induced Schottky

gate degradation, or gate-sinking
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Summary so far
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Thermal stress experiment

Impact of thermal stress: 1 min. RTA in N2

Permanent degradation: 
• Prominent IDmax ↓ with T
• Positive VTsat shift
• IDoff ↑

Same signature as that of 
degradation mechanism 2
 consistent with gate sinking
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Virgin device: Thermionic Field 
Emission fitting

• T dependence well explained by Thermionic Field Emission (TFE) theory
• Extracted effective Schottky barrier height (φb): 0.95 eV
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After harsh gate stress: Poole-Frenkel
Emission fitting

• T dependence well explained by Poole-Frenkel Emission (P-F) theory
• Extracted effective trap energy level (φt): 0.11 eV
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Stress conditions: VGS,stress = 0 – 2.5 V in 0.1 V steps, VDS = 0 V
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After mild gate stress: Poole-Frenkel
Emission fitting

• T dependence well explained by Poole-Frenkel Emission (P-F) theory
• Extracted effective trap energy level (φt): 0.36 eV
• Close to donor level of N vacancy in AlN of 0.5 eV [T. L. Tansley, PRB 

1992] 27

Stress conditions: VGS,stress = 2 V, VDS = 0 V
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Identified two degradation mechanisms:
1. Under mild gate stress:

o Observation: IGoff ↑, trapping ↑, thermally enhanced
o Proposed mechanism 1: high electric field induced defect 

generation in AlN interlayer

2. Under harsh gate stress:
o Observation: IGoff ↑, RD and RS ↑, ΔVT > 0, IDmax ↓, thermally 

enhanced
o Proposed mechanism 2: self-heating induced Schottky gate 

degradation, or gate-sinking

Transport model for IG in low forward regime:
• Virgin device: TFE with φb = 0.95 eV
• After degradation mechanism 1: P-F with φt = 0.36 eV
• After degradation mechanism 2: P-F with φt = 0.11 eV

Conclusions
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